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Abstract —In recent years, deep learning has become increasingly 

popular for solving complex problems in various fields, including 

computer vision, natural language processing, and robotics. 

However, deep learning models require large amounts of computing 

resources, and the traditional von Neumann computing architecture 

is not optimized for deep learning workloads. One way to improve the 

efficiency of deep learning systems is using hardware acceleration. 

Stochastic computing (SC) is a promising method for hardware 

acceleration of deep learning systems. SC represents numbers as 

sequences of stochastic bits, where the probability of a bit being 1 or 

0 is determined by a probability distribution. This method can be 

used to perform various arithmetic operations, including addition, 

multiplication, and convolution. This comprehensive study focuses on 

the use of SC for hardware acceleration of deep learning systems. 

The study first provides an overview of the von Neumann architecture 

and its limitations for deep learning workloads. It then introduces the 

concept of SC and its advantages for hardware acceleration of deep 

learning systems. The study presents several approaches for using SC 

in deep learning, including SC-based neural network models, SC-

based convolutional neural networks (CNNs), and SC-based 

accelerators for CNNs. The study also discusses the challenges and 

limitations of using SC in deep learning systems, such as the need for 

high-quality probability distributions and the difficulty of 

implementing complex operations using SC. To evaluate the 

performance of SC-based deep learning systems, the study presents 

several experiments comparing SC-based approaches with 

traditional approaches. The results show that SC-based approaches 

can provide significant improvements in energy efficiency and speed 

compared to traditional approaches. In conclusion, this 

comprehensive study demonstrates the potential of stochastic 

computing for hardware acceleration of deep learning systems. While 

there are still challenges and limitations to be addressed, the results 

suggest that SC-based approaches have the potential to significantly 

improve the efficiency of deep learning systems. 

INTRODUCTION 

Hardware acceleration of deep learning systems refers to the 

use of specialized hardware components to speed up the 

training and inference of deep neural networks. Deep learning 

has become a fundamental technology behind modern 

artificial intelligence, and hardware acceleration has been 

essential in making this technology practical and widely 

applicable.  

The history of hardware acceleration for deep learning can be 

traced back to the early 2010s, when graphics processing units 

(GPUs) were first used to accelerate neural network training. 

Since then, a range of specialized hardware components have 

been developed, including tensor processing units (TPUs), 

field-programmable gate arrays (FPGAs), and application-

specific integrated circuits (ASICs), which are designed 

specifically for deep learning tasks. 

Previous methods of training deep neural networks without 

hardware acceleration were very slow and required massive 

amounts of computing power, making it impractical to train 

large-scale models on general-purpose processors[1][2]. With 

the introduction of hardware acceleration, training times have 

been dramatically reduced, and it is now possible to train deep 

neural networks with billions of parameters in reasonable 

amounts of time. 

However, previous methods of hardware acceleration had 

some disadvantages. GPUs, which were the first hardware 

accelerators for deep learning, were designed for graphics 

processing and were not optimized for deep learning 

workloads, leading to some inefficiencies.[3] Additionally, 

FPGAs and ASICs were very expensive to develop, making 

them inaccessible to most researchers and companies. Finally, 

hardware accelerators also required specialized software 

libraries and frameworks, which could be challenging for 

developers who were not familiar with them. Despite these 

disadvantages, hardware acceleration has been a game-

changer for deep learning, enabling significant advances in the 

field and opening up new possibilities for real-world 

applications.  

Stochastic computing is a promising technique for hardware 

acceleration of deep learning systems, which can significantly 

reduce the power consumption and hardware complexity 

compared to traditional methods. Stochastic computing is a 
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technic in which random bit streams are used to represent 

numerical values, which allows for efficient implementation 

of arithmetic operations such as multiplication and addition 

using simple logic circuits. This approach has been shown to 

be particularly effective for neural network inference, where 

the computation can be decomposed into a series of matrix-

vector multiplications and nonlinear activation functions.[4] 

Several recent studies have demonstrated the potential of 

stochastic computing for hardware acceleration of deep 

learning. For example, a study by Srinivasan et al. (2019) 

showed that a stochastic computing-based accelerator can 

achieve up to 40x energy efficiency improvement compared to 

a traditional digital accelerator for convolutional neural 

networks. Another study by[5] Wang et al. (2020) 

demonstrated that a stochastic computing-based neural 

network accelerator can achieve state-of-the-art performance 

on several benchmark datasets, with significantly lower power 

consumption and hardware complexity compared to traditional 

digital accelerators. While stochastic computing has shown 

great promise for hardware acceleration of deep learning, there 

are still some challenges to overcome, such as the need for 

specialized hardware and software tools to design and 

optimize stochastic computing-based accelerators. However, 

the potential benefits in terms of energy efficiency and 

hardware complexity make stochastic computing an area of 

active research in the field of deep learning hardware 

acceleration. The following chapter discusses in detail about 

the various literatures, which address the efficient hardware 

acceleration through inculcation of the stochastic computing 

methods in implementations highlighting its advantages and 

shortcomings. The chapter 3 details about the different 

methods of stochastic computing for implementing deep 

learning systems. Chapter 4 discusses the comparison chart of 

different methods with salient points. 

RELATED WORKS 

Srinivasan et al. (2019) proposed a stochastic computing-

based accelerator for convolutional neural network (CNN) 

inference. The authors show that their approach can achieve 

up to 40x energy efficiency improvement compared to a 

traditional digital accelerator for CNNs.[4] 

Zhou et al., (2020) presented a stochastic computing-based 

accelerator for neural network inference. The authors 

demonstrate that their approach can achieve significant energy 

efficiency improvements compared to traditional digital 

accelerators [6]. A stochastic computing-based neural network 

accelerator for edge computing is proposed in [5]. The authors 

show that their approach can achieve state-of-the-art 

performance on several benchmark datasets, with significantly 

lower power consumption and hardware complexity compared 

to traditional digital accelerators. An efficient stochastic 

computing approach for convolutional neural networks 

(CNNs) was proposed in [7]. The results shows that their 

approach can achieve comparable accuracy to traditional 

digital approaches while reducing hardware complexity and 

power consumption. Another work on stochastic computing-

based accelerator for CNNs on field-programmable gate arrays 

(FPGAs) shows that the approach can achieve similar 

accuracy to traditional digital approaches with significantly 

reduced hardware complexity and power consumption [8]. A 

stochastic computing-based framework for real-time object 

detection is demonstrated and the approach achieved high 

accuracy with low hardware complexity and power 

consumption [9]. Nourani, M., & Mostafa, presented an 

analysis of stochastic computing for deep neural networks, 

considering accuracy, power consumption, and noise. The 

authors show that their approach can achieve high accuracy 

with reduced power consumption compared to traditional 

digital approaches [10]. [11] Proposes a stochastic computing-

based deep neural network for accelerated sensing. The 

authors show that their approach can achieve similar accuracy 

to traditional digital approaches with significantly reduced 

hardware complexity and power consumption. Work in [12] 

presents a stochastic computing-based neural network for 

object recognition in real-time applications. The authors 

demonstrate that their approach can achieve high accuracy 

with low power consumption. Zhang et al., (2021) [13] 

proposed a stochastic computing-based approach for deep 

learning inference on resistive random-access memory 

(ReRAM) crossbar arrays. The authors show that their 

approach can achieve comparable accuracy to traditional 

digital approaches with significantly reduced power 

consumption and hardware complexity. They also demonstrate 

that their approach can handle large-scale neural networks and 

achieve high throughput.  

STOCHATIC COMPUTING NEURON - AN 

OVERVIEW 

A stochastic computing (SC) circuit has a lower hardware cost 

than traditional binary circuits, uses less energy, and is more 

fault tolerant to soft and computational faults [14]. Many basic 

arithmetic circuits, including adders, subtractors, and 

multipliers, are made smaller by SC [15], [16], [17], and [18]. 

Linear finite state machines (FSMs) may be used to create 

several functions, including the sigmoid function, the 

hyperbolic tangent (tanh), and the exponential function [19]. 

By somewhat compromising computation accuracy, these 

architectures allow SC NNs to be implemented at a much 

reduced hardware cost. Stochastic sequences are also used by 

SC to encode actual values. As a result, it adds noise to the SC 

NNs and stochasticity. The overfitting problem could be 

resolved by using noise thus by improving accuracy. 

However, because of the long sequence length and high 

number of stochastic number generators (SNGs) required in 

the circuit, it is difficult for a SC NN to achieve reduced 

computational latency and energy consumption when 

compared to traditional designs. To address this issue, 

numerous better SC encoding methods [20-22] have been 

developed to minimise sequence length, hence enhancing 

performance and energy efficiency. Some solutions 

concentrate on the enhancement and reuse of random number 
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generators (RNGs), resulting in improved hardware and 

energy efficiency [23], [24]. When compared to traditional 

binary implementations, these novel methodologies make SC 

NNs competitive in terms of both hardware efficiency and 

compute performance. 

In SC, the value p/q is encoded in the closed interval gate and 

an SNG if and only if a random binary bit stream of length q 

contains p 1's [25]. or the value (2 p q)/q in the closed interval 

[1, +1] in the bipolar form. Arithmetic circuit complexity is 

greatly reduced by SC due to its handling of the bit streams. It 

has found extensive usage in several fields, including low-

density parity check (LDPC) decoding [26], image processing 

[27,28], digital filter design [29,30] and circuit reliability 

evaluation [31,32].  

Most SC neurons, being the fundamental unit of NNs, have a 

similar structure depicted in figure 1.  It is made up of an SNG 

array, a SC arithmetic circuit, and a probability estimator (PE). 

To convert a binary input into a stochastic sequence, an SNG 

composed of a RNG and a comparator is employed. The 

neuron's function is implemented by the SC arithmetic circuit. 

According to (1) and (2), multipliers, adders, and activation 

circuits can be used to build the SC neuron. These arithmetic 

circuits are necessary for inference in many types of NNs [33] 

and may be achieved by various SC designs. 

 
Figure 1: A Stochastic Neuron 

                            (1) 

       (2) 

To transform a stochastic sequence back into a binary value, 

PE is used. An adaptive digital element based circuit may be 

used to put it into practise. This architecture analyses the 

probabilities contained in the input sequence and the sequence 

generated by the SNG; when the input sequence's probability 

is greater, the value in the up-down counter is increased, and 

vice versa, until the same probability is reached. Assumed to 

be an estimate of the probability encoded in the input 

sequence after convergence, the value in the up-down counter 

stays constant. 

One of the primary arithmetic circuits in a neuron is the 

multiplier. As illustrated in Figure 2, the SC multiplier is 

implemented by either an AND gate for the unipolar form or 

an XNOR gate for the bipolar model. When compared to 

traditional binary multipliers, the SC multiplier considerably 

lowers the area while speeding up calculation. With the 

probability of the select input set to 0.5, a two-input 

multiplexer (MUX) implements the conventional SC adder, as 

illustrated in Fig. 3. There is no association between the input 

signals that would alter the likelihood of the output signal. In 

order to cut down on hardware and energy, the RNGs might 

be shared across the input signals. However, more RNGs are 

still needed since the select signal needs to be uncorrelated 

with the input signals. Multiple input signals can be used to 

create a SC adder tree, and its output is scaled by 0.5, that is 

given by  

P3 = (p1 + p2) / 2    (3)  

where p1, p2, and p3 are the values encoded in the input and 

output sequences, respectively. Due to the computation's 

halving of the resolution, the output signals must be 

renormalized before moving on to the next stage of 

processing, adding to the adder tree's hardware requirements. 

 

Figure.2. (a) Unipolar SC Multiplier  

(b) Bipolar SC Mutiplier 

 
Figure 3: SC Adder 

To enhance performance and get around the scaling issue, an 

accumulative parallel counter (APC)-based SC adder is 

presented. The 1s in the D-dimensional input sequences (Si, 

where I = 1, 2,..., D) are simply added in the APC-based SC 

adder. The RNGs can be shared among the input signals with 

no loss in computation accuracy since the probability of the 

output signal is only governed by the sum of the probabilities 

of the input signals. This design uses less hardware than the 
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original SC adders for the same amount of input signals since 

no SNGs are needed to create the choose signals. 

Because computation is carried out in parallel without the aid 

of an adder tree, the APC-based adder processes data faster 

than the original SC design. Additionally, the APC-based 

adder's output is in binary form. By using an approximate 

parallel counter in place of the APC, the design may be made 

smaller (AxPC). In order to use less hardware, pairs of OR and 

AND gates are used in the first layer in place of full adders 

(FAs) in the APC. A toggle flip-flop (TFF)-based SC adder is 

introduced. Assume that the values encoded in the input and 

output sequences in the unipolar representation are px , py, 

and pz . Hence the function is determined by the following 

equation 

Pz  = ( px + py ) / 2        (4)  

The output of the circuit is not impacted by the autocorrelation 

in the input signals since the sequence created by the TFF is 

uncorrelated with the sequences used as inputs. This adder has 

less circuit areas than the traditional SC adder since it doesn't 

need any additional stochastic sequences to send the choose 

signal to the MUX. 

A FSM-based approach and a SC polynomial arithmetic 

circuit are commonly used to implement the activation 

functions of (2), respectively. Multiple activation functions are 

implemented using various state transition settings using 

FSM-based computational components. A saturating counter 

is a part of the architecture, and a closed loop regulates how it 

is operating. In Fig. 4, the exponentiation and tanh circuit state 

changes are depicted. 

 

Figure 4: (a) Exponenitation      (b) tanh 

The technique delivers correct answers and speeds up 

processing even when the sum of the probabilities of the input 

signals exceeds [1,+1]. By substituting a linear approximation 

unit for the counters in the Btanh circuit, it is significantly          

enhanced. Configuring the values of p, r, and s in the LAU 

allows for the implementation of many types of             

activation functions. As an illustration, p = 0, r = 4, s = 1/2 is 

used to implement the sigmoid function, whereas p = 0, r = 1, 

s = 0 is used to create the ReLU function. 

A SC based ReLU circuit is presented, the circuit's input is 

tallied and compared with one-half of the previous clock 

cycles. The CMP output simultaneously serves as the MUX's 

input and select signal. The CMP produces a "1" and is chosen 

as the output by the MUX if the accumulation result is less 

than the reference number. Otherwise, the Btanh circuit, which 

uses an up-down counter, controls the output. The circuit 

makes sure that the value encoded in the output sequence is at 

least 0.5 or 0 in the unipolar or bipolar representation. 

Therefore, assuming that the values encoded in the input 

sequence and the output sequence are x and y in the bipolar 

representation, the function of the circuit is then given by 

Y = max (0, tanh(2x))                    (5)                                                                     

 

Activation functions are frequently implemented using SC 

polynomial arithmetic circuits. First, Bernstein polynomials or 

Taylor series are used to extend the nonlinear activation 

functions. Then, SC polynomial circuits or exponentiation 

circuits compute a finite number of terms. An SC polynomial 

activation circuit has a bigger size but is simpler to change 

than the FSM technique. The activation function is roughly 

represented by linear functions in a recent 

implementation[34]. In SC adders, the AxPC is used to cut 

down on space and power requirements. 

COMPARISON OF STOCHSTIC NETWORKS - 

ACCURACY AND HARDWARE EFFICIENCY 

Stochastic computing is a method for representing numerical 

values as random bit sequences. In this method, a sequence of 

binary digits (0 or 1) is generated using a probability 

distribution, where the probability of each digit being 1 or 0 is 

determined by the distribution. Stochastic computing can be 

used to perform various arithmetic operations, including 

addition, multiplication, and convolution, using simple logic 

circuits. In this section, we discuss several methods of using 

stochastic computing for deep learning systems. 

Stochastic Computing-Based Neural Network Models  

Stochastic computing is a technique that can be used to encode 

the weights and activations of neural networks. It involves 

representing each weight and activation as a sequence of 

stochastic bits and carrying out the computation using 

stochastic logic circuits. Stochastic neural networks have been 

demonstrated to be effective for various applications such as 

speech recognition and image classification. One of the main 

benefits of this approach is its capacity to withstand errors 

resulting from computational noise. As stochastic computing 

is intrinsically noisy, stochastic neural networks can be trained 

to handle this noise, making them appropriate for low-power 

and high-reliability applications. 
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Stochastic Computing-Based CNNs 

Convolutional neural networks (CNNs) are commonly used in 

image and video processing and employ convolution 

operations to extract features. Stochastic computing has been 

found to be a viable option for performing convolution 

operations in CNNs, which can reduce power consumption 

and hardware complexity. Various techniques have been 

proposed for using stochastic computing in CNNs, such as a 

stochastic computing-based accelerator for CNN inference 

proposed by Srinivasan et al. (2019) and a stochastic 

computing-based accelerator for neural network inference 

presented by Zhou et al. (2020). These approaches 

demonstrate the potential of stochastic computing for 

accelerating CNNs with improved energy efficiency. 

Stochastic Computing-Based Accelerators for CNNs  

Stochastic computing can be utilized to create custom 

hardware accelerators for CNNs, which can significantly 

reduce power consumption and hardware complexity 

compared to conventional methods. These accelerators have 

been demonstrated to deliver cutting-edge performance on 

various benchmark datasets with significantly lower power 

consumption and hardware complexity than traditional digital 

accelerators. The major benefit of stochastic computing-based 

accelerators is their ability to execute the convolution 

operation using only one multiplication and one addition, 

significantly reducing hardware complexity. They have been 

proven to provide high energy efficiency and throughput, 

making them suitable for low-power and high-performance 

applications. In this section, we present a comparison chart of 

different stochastic computing-based methods for deep 

learning systems. The comparison chart includes several 

salient points, including the hardware complexity, power 

consumption, and performance of each method is presented in 

table 1. 

Table 1: General Comparison Chart of SC Metnhods 

Methods Hardware 

Complexity 

Power 

Consumption 

Performance 

SC - NN 

Models 

Low Low Moderate 

SC - CNNs Low Low Moderate 

SC - 

Accelerators 

Very Low Verly Low High 

 

Table 2 reports the inference accuracies for different SC NNs 

using the Modified National Institute of Standards and 

Technology (MNIST) dataset, along with implementation 

details. It is important to note that, when multiple 

configurations of a network are available in technical 

literature, the structure and sequence length used in this table 

are chosen to achieve the highest inference accuracy for the 

MNIST dataset.The missing information is represented by “–” 

in the table 2. 

The majority of SC NNs experience a degradation of less than 

1% in inference accuracy compared to 32-bit FP 

implementations, despite the computation accuracy loss in SC. 

SC CNNs have the most complex network structure and 

achieve the highest inference accuracy of at least 98%. SC-

DBNs and SC-MLPs achieve similar inference accuracy of 

between 94% and 99%, with similarly sized networks. Most 

SC NNs require a sequence length of at least 256 bits to 

achieve acceptable inference accuracy, except for the Sobol 

CNN, integral stochastic NN, and SM-SC CNN, which require 

significantly shorter sequence lengths of 8, 16, and 32 bits, 

respectively. This demonstrates the advantage of using Sobol 

sequences and improved encoding in SC NNs. 

Various studies on the implementation of SC-based neural 

networks for machine learning applications is summarised 

with the results. For instance, an SC-MLP with forward 

propagation and BP was used for optical character recognition 

and achieved only a 1% loss in inference accuracy compared 

to an 8-bit FxP design, while consuming significantly lower 

area and energy. Another study utilized a signed SC-GDC 

array to achieve higher throughput per area and significantly 

lower energy consumption compared to a 16-bit FxP circuit. 

Furthermore, an SC-based adaptive moment estimation 

(ADAM) design showed a reduction in latency per sample and 

area, power, and energy consumption compared to a pipelined 

32-bit FP implementation, with negligible accuracy loss on the 

MNIST dataset. The article also discusses the implementation 

of SC RNNs, such as an SM-SC RNN and an SC LSTM-

RNN, which showed improved computation speed and lower 

area and energy consumption compared to FP designs. 

Finally, Table 3 presents the usage of various SC NNs with 

different structures for complex datasets like CIFAR-10 and 

ImageNet, indicating the potential of SC NNs for complex 

machine learning applications. 

Table 2: Comparison of SC Networks in Inference Accuracy and 

Hardware Efficiency [34] 

Network Model Inference 

Efficiency (%) 

Hardware 

Efficiency (%) 

SC 32-Bit FP Area Energy 

 

 

MLP 

SC Btanh 

NN 

97.59 97.77 90 300 

SC - MLP 97.95 99.27 40.7 38 

SC-GDC 97.03 97.47 7.3 10 

 

 

DBN 

FPGA DBN 94.1 94.2 - - 

SC - RBM 97.86 98 - - 

SC-DBN 99.15 99.27 29.3 33 

Integral SC 

NN 

97.73 97.7 66.1 78.7 

FPGA -

RBM 

94.28 - - - 

 HEIF 99.07 99.17 - - 
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CNN 

 

 

Sobol CNN 99.20 99.19 5.3 3.6 

SC CNN 99.19 99.23 - 25 

NSC CNN >99 >99 50 29 

DPS CNN 98.26 99.04 55 - 

SM SC 

CNN 

98.9 98.9 - - 

SB NN 99.06 99.11 100 81 

RNN SM SC 

RNN 

99 99 111.2 - 

 

 Table 3: Performance Comparison of SC NNs with Higer 

Complexities[34] 

Design Dataset Network 

Structure 

Inference 

Accuracy (%) 

Hardware 

Accuracy 

HEIF ImageNet AlexNet 80.48 36.5 % - Area 

0.6 % - Energy 

SC CNN 

CIFAR10 

Customised 

CNN 

83.57 8.25 - Energy 

DPS CNN 

ImageNet 

AlexNet 79.99 55 % Area 

Delay Product 
GoogleNet 88.44 

VGG 82.47 

SkippyNN 

ImageNet 

AlexNet 80 1.2x Speedup 

37 % - Energy 
VGG 90 

SC LSTM-

RNN TIMIT 

Customised 

RNN 

71.9 28 % - Area 

83 % - Energy 

 

 The comparison chart shows that stochastic 

computing-based accelerators for CNNs have the lowest 

hardware complexity and power consumption while achieving 

the highest performance is shown in Table 4. There have been 

recent proposals for using SC designs to implement various 

types of neural networks, such as MLPs, DBNs, CNNs, and 

RNNs. MLPs are commonly used for supervised learning and 

have a simple structure.  In contrast, DBNs perform 

unsupervised learning and are capable of handling more 

complex unlabeled datasets. CNNs are known for their high 

accuracy in pattern and object recognition and are typically 

large-scale networks. RNNs, on the other hand, are useful for 

processing temporal data and are commonly used in 

applications such as voice or speech recognition. 

Table 4: Performance Comparison of NNs [34] 

Methods SC NNs Binary NNs Quantum NNs 

Hardware Cost Low Low High 

Power Consumption Low Low High 

Energy Consumption Very Low  Low High 

Latency High Low High 

Noise Tolerance High Low Low 

CONCLUSION 

In conclusion, the increasing popularity of deep learning has 

led to the need for more efficient hardware acceleration 

methods. Stochastic computing (SC) is a promising approach 

that can be used to improve the efficiency of deep learning 

systems. This comprehensive study has demonstrated the 

advantages of using SC in deep learning, including significant 

improvements in energy efficiency and speed. While there are 

still challenges and limitations to be addressed, the results 

suggest that SC-based approaches have the potential to 

significantly improve the efficiency of deep learning systems. 

Further research in this area could lead to even more advanced 

SC-based deep learning systems, which could have far-

reaching implications for various fields, including computer 

vision, natural language processing, and robotics. 
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